Identities inside the Gluon and the Graviton Scattering Amplitudes— A Proof of BCJ conjecture

The duality between the color/kinematic factors and the duality between gluon and graviton scattering amplitude via Heterotic string theory

Henry Tye and Yang Zhang

Laboratory for Elementary Particle Physics, Cornell University

February 19, 2010

Henry Tye and Yang Zhang (LEPP)

Identities, Gluon, Graviton

February 19, 2010 1 / 29

In Yang-Mills theory, there are simpler and richer structures than Feynmann rules.

Warm up: In the 4-gluon scattering tree amplitude, do you need to sum over all the s, t, u contribution to get a gauge independent quantity?

(日) (同) (三) (三)

In Yang-Mills theory, there are simpler and richer structures than Feynmann rules.

Warm up: In the 4-gluon scattering tree amplitude, do you need to sum over all the *s*, *t*, *u* contribution to get a gauge independent quantity? No, if the *s* and *t* contribution are combined carefully, we already get an gauge independent quantity A_{1234} . (Similarly, A_{2134} , A_{1324} ...)

In Yang-Mills theory, there are simpler and richer structures than Feynmann rules.

Warm up: In the 4-gluon scattering tree amplitude, do you need to sum over all the *s*, *t*, *u* contribution to get a gauge independent quantity? No, if the *s* and *t* contribution are combined carefully, we already get an gauge independent quantity A_{1234} . (Similarly, A_{2134} , A_{1324} ...) Furthermore, they are related,

$$A_{1234} + A_{2134} + A_{1324} = 0.$$

These kind of relations or identities are important,

- Theoretically valuable...
- Computational valuable...

In Yang-Mills theory, there are simpler and richer structures than Feynmann rules.

Warm up: In the 4-gluon scattering tree amplitude, do you need to sum over all the *s*, *t*, *u* contribution to get a gauge independent quantity? No, if the *s* and *t* contribution are combined carefully, we already get an gauge independent quantity A_{1234} . (Similarly, A_{2134} , A_{1324} ...) Furthermore, they are related,

$$A_{1234} + A_{2134} + A_{1324} = 0.$$

These kind of relations or identities are important,

- Theoretically valuable...
- Computational valuable...

In Yang-Mills theory, there are simpler and richer structures than Feynmann rules.

Warm up: In the 4-gluon scattering tree amplitude, do you need to sum over all the *s*, *t*, *u* contribution to get a gauge independent quantity? No, if the *s* and *t* contribution are combined carefully, we already get an gauge independent quantity A_{1234} . (Similarly, A_{2134} , A_{1324} ...) (Gauge invariance of open string amplitude.) Furthermore, they are related,

$$A_{1234} + A_{2134} + A_{1324} = 0.$$

These kind of relations or identities are important,

- Theoretically valuable...
- Computational valuable...

In Yang-Mills theory, there are simpler and richer structures than Feynmann rules.

Warm up: In the 4-gluon scattering tree amplitude, do you need to sum over all the *s*, *t*, *u* contribution to get a gauge independent quantity? No, if the *s* and *t* contribution are combined carefully, we already get an gauge independent quantity A_{1234} . (Similarly, A_{2134} , A_{1324} ...) (Gauge invariance of open string amplitude.) Furthermore, they are related,

 $A_{1234} + A_{2134} + A_{1324} = 0$. photon decoupling theorem.

These kind of relations or identities are important,

- Theoretically valuable...
- Computational valuable...

M-gluon tree amplitude in pure YM theory is

$$\mathcal{A}_{M}^{\text{YM}} = \sum_{i}^{(2M-5)!!} \frac{c_{i}n_{i}}{P_{i}}. c_{i} \text{ color factor. } n_{i} \text{ kinematic factors. } P_{i} \text{ poles.}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

M-gluon tree amplitude in pure YM theory is

$$\mathcal{A}_{M}^{\text{YM}} = \sum_{i}^{(2M-5)!!} \frac{c_{i}n_{i}}{P_{i}}. c_{i} \text{ color factor. } n_{i} \text{ kinematic factors. } P_{i} \text{ poles.}$$

Z.Bern, J.Carrasco and H.Johansson conjecture that, which is checked by computer until $M \le 8$. (hep-ph/0805.3993)

3

(日) (周) (三) (三)

M-gluon tree amplitude in pure YM theory is

$$\mathcal{A}_{M}^{\text{YM}} = \sum_{i}^{(2M-5)!!} \frac{c_{i}n_{i}}{P_{i}}. c_{i} \text{ color factor. } n_{i} \text{ kinematic factors. } P_{i} \text{ poles.}$$

Z.Bern, J.Carrasco and H.Johansson conjecture that, which is checked by computer until $M \le 8$. (hep-ph/0805.3993)

• If three color factors satisfy (Jacobi) $c_i + c_j + c_k = 0$, then the corresponding $n_i + n_j + n_k = 0$.

Checked by computer up to M = 8...

M-gluon tree amplitude in pure YM theory is

$$\mathcal{A}_{M}^{\text{YM}} = \sum_{i}^{(2M-5)!!} \frac{c_{i}n_{i}}{P_{i}}. c_{i} \text{ color factor. } n_{i} \text{ kinematic factors. } P_{i} \text{ poles.}$$

Z.Bern, J.Carrasco and H.Johansson conjecture that, which is checked by computer until $M \le 8$. (hep-ph/0805.3993)

- If three color factors satisfy (Jacobi) $c_i + c_j + c_k = 0$, then the corresponding $n_i + n_j + n_k = 0$.
- Ø M-graviton tree amplitude in Einstein theory is

$$A_M^{\text{Grav}} = \sum_{i}^{(2M-5)!!} \frac{n_i n_i}{P_i}. \text{ same } n_i \text{ and } P_i$$

Checked by computer up to M = 8...

(日) (周) (三) (三)

BCJ conjecture is important, because if it is true

3

< ロ > < 同 > < 三 > < 三

BCJ conjecture is important, because if it is true

- The number of the independent *n_i* and also the independent partial amplitudes dropped dramatically.
- By the unitarity method: although *n_i* are just from the tree YM amplitude, BCJ shown their relations can be used to simplify the YM loop amplitude calculation.
- The Feynman rules for graviton tree amplitude in Einstein theory is extremely messy, however, BCJ conjecture 2 gives a neat result without even deriving the rules.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BCJ conjecture is important, because if it is true

- The number of the independent *n_i* and also the independent partial amplitudes dropped dramatically.
- By the unitarity method: although *n_i* are just from the tree YM amplitude, BCJ shown their relations can be used to simplify the YM loop amplitude calculation.
- The Feynman rules for graviton tree amplitude in Einstein theory is extremely messy, however, BCJ conjecture 2 gives a neat result without even deriving the rules.

Although the BCJ conjecture-1 seems simple, it was not noticed until recently when people are working on loop amplitude. The direct proof with Feynman rules soon became too complicated. BCJ conjecture-2 is almost impossible to prove just by Feynman rules.

 $c_i + c_j + c_k = 0$ is pure mathematical while $n_i + n_j + n_k = 0$ is physical. Why are they dual to each other?

イロト 不得 トイヨト イヨト 二日

 $c_i + c_j + c_k = 0$ is pure mathematical while $n_i + n_j + n_k = 0$ is physical. Why are they dual to each other? Make mathematics physical!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $c_i + c_j + c_k = 0$ is pure mathematical while $n_i + n_j + n_k = 0$ is physical. Why are they dual to each other?

Make mathematics physical!

Recall that in heterotic string theory, the color index is represented by discrete momentum in root lattice. The whole Lie-algebra structure can be understood as the interaction of strings with discrete momentum.

 $c_i + c_j + c_k = 0$ is pure mathematical while $n_i + n_j + n_k = 0$ is physical. Why are they dual to each other?

Make mathematics physical!

Recall that in heterotic string theory, the color index is represented by discrete momentum in root lattice. The whole Lie-algebra structure can be understood as the interaction of strings with discrete momentum. And heterotic string theory contains graviton!

That is a hint for BCJ conjecture-2...

Our strategy: Heterotic string theory + KLT relation

Heterotic string theory is closed string theory, within it

 $Gluon = color sector \times vector sector$

Graviton = vector sector \times vector sector

KLT relation, (H.Kawai, D.C.Lewellen and H.Tye), shown that

closed amplitude \propto (left open amplitude) \times (right open amplitude)

- Open amplitudes, by contour integral argument, would satisfy the same kind of identities, no matter they are left/right, vector/color. BCJ conjecture-1 is proven.
- When left sector: color \rightarrow vector, the c_i are replaced by n_i 's, so KLT relation gives,

$$A^{\rm YM} = \sum_{i} \frac{c_{i} n_{i}}{P_{i}} \to A^{\rm Grav} = \sum_{i} \frac{n_{i} n_{i}}{P_{i}}$$

Henry Tye and Yang Zhang (LEPP)

Outline

Outline

- Introduction
- (Physics 651) BCJ conjecture in the view point of field theory.
- Review of the heterotic string theory, in the low energy limit
- Proof of BCJ conjecture-1: 4-point example
- Proof of BCJ conjecture-1: general case
- Graviton scattering amplitude and other amplitudes
- Summary

- 4 同 6 4 日 6 4 日 6

4-gluon example

Scattering amplitude for four gluons, (k_1, a_1, ζ_1) , (k_2, a_2, ζ_2) , (k_3, a_3, ζ_3) and (k_4, a_4, ζ_4) is easily obtained by Feynman rules,

$$\mathcal{A}_{4}^{\mathsf{YM}} = \frac{c_{\mathsf{s}} n_{\mathsf{s}}}{\mathsf{s}} + \frac{c_{u} n_{u}}{u} + \frac{c_{t} n_{t}}{t}$$

3

(日) (周) (三) (三)

4-gluon example

Scattering amplitude for four gluons, (k_1, a_1, ζ_1) , (k_2, a_2, ζ_2) , (k_3, a_3, ζ_3) and (k_4, a_4, ζ_4) is easily obtained by Feynman rules,

$$\mathcal{A}_4^{\mathsf{YM}} = \frac{c_s n_s}{s} + \frac{c_u n_u}{u} + \frac{c_t n_t}{t}$$

where the 4-point vertex contribution is absorb into s, t and u channels. $c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$, $c_t = f^{a_2 a_3 b} f^{b a_1 a_4}$ and $c_u = f^{a_3 a_1 b} f^{b a_2 a_4}$.

4-gluon example

Scattering amplitude for four gluons, (k_1, a_1, ζ_1) , (k_2, a_2, ζ_2) , (k_3, a_3, ζ_3) and (k_4, a_4, ζ_4) is easily obtained by Feynman rules,

$$\mathcal{A}_4^{\mathsf{YM}} = \frac{c_s n_s}{s} + \frac{c_u n_u}{u} + \frac{c_t n_t}{t}$$

where the 4-point vertex contribution is absorb into s, t and u channels. $c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$, $c_t = f^{a_2 a_3 b} f^{b a_1 a_4}$ and $c_u = f^{a_3 a_1 b} f^{b a_2 a_4}$. However, n_i 's are complicated,

$$n_{s} = i[(\zeta_{1} \cdot \zeta_{2})(k_{2} - k_{1}) - (2k_{2} \cdot \zeta_{1})\zeta_{2} + (2k_{1} \cdot \zeta_{2})\zeta_{1}] \\ \times [(\zeta_{3} \cdot \zeta_{4})(k_{4} - k_{3}) - (2k_{4} \cdot \zeta_{3})\zeta_{4} + (2k_{3} \cdot \zeta_{4})\zeta_{3}] \\ -i[(\zeta_{1} \cdot \zeta_{3})(\zeta_{2} \cdot \zeta_{4}) - (\zeta_{1} \cdot \zeta_{4})(\zeta_{2} \cdot \zeta_{3})]s \\ n_{t} = ..., n_{u} = ...$$

Henry Tye and Yang Zhang (LEPP)

It is easy to see that, by Jacobi identity,

$$c_s + c_t + c_u = f^{a_1 a_2 b} f^{b a_3 a_4} + f^{a_2 a_3 b} f^{b a_1 a_4} + f^{a_3 a_1 b} f^{b a_2 a_4} = 0$$

- 34

It is easy to see that, by Jacobi identity,

$$c_s + c_t + c_u = f^{a_1 a_2 b} f^{b a_3 a_4} + f^{a_2 a_3 b} f^{b a_1 a_4} + f^{a_3 a_1 b} f^{b a_2 a_4} = 0$$

However, it is amazing that the kinematic factors satisfy the same identity as the color factors,

$$n_s + n_t + n_u = 0$$

where we used the conservation of momenta, on-shell condition and the physical polarization condition $k_i \cdot \zeta_i = 0$. The check of the relation is straightforward but tedious.

It is easy to see that, by Jacobi identity,

$$c_s + c_t + c_u = f^{a_1 a_2 b} f^{b a_3 a_4} + f^{a_2 a_3 b} f^{b a_1 a_4} + f^{a_3 a_1 b} f^{b a_2 a_4} = 0$$

However, it is amazing that the kinematic factors satisfy the same identity as the color factors,

$$n_s + n_t + n_u = 0$$

where we used the conservation of momenta, on-shell condition and the physical polarization condition $k_i \cdot \zeta_i = 0$. The check of the relation is straightforward but tedious.

Why do the color factors and the kinematic factor satisfy the same kind of identity?

More complicated, 15 channels

AYM .	$c_1 n_1$	$c_2 n_2$	$+ \frac{c_3 n_3}{4}$	<i>C</i> ₄ <i>n</i> ₄	$c_5 n_5$	$c_6 n_6$ +	$c_7 n_7$
/ 15	<i>s</i> ₁₂ <i>s</i> ₄₅	<i>s</i> ₁₅ <i>s</i> ₂₃	<i>s</i> ₁₂ <i>s</i> ₃₄	<i>s</i> ₂₃ <i>s</i> ₄₅	<i>s</i> ₁₅ <i>s</i> ₃₄	<i>s</i> ₁₄ <i>s</i> ₂₅	<i>s</i> ₁₄ <i>s</i> ₂₃
$c_8 n_8 \downarrow$	$c_9 n_9$	$\frac{c_{10}n_{10}}{c_{10}}$	$c_{11}n_{11}$	$c_{12}n_{12}$	$+ \frac{c_{13}n_{13}}{2}$	$+ \frac{c_{14}n_{14}}{14}$	$+ \frac{c_{15}n_{15}}{15}$
<i>s</i> ₃₄ <i>s</i> ₂₅ ′	<i>s</i> ₁₃ <i>s</i> ₂₅ ′	<i>s</i> ₁₃ <i>s</i> ₂₄	<i>s</i> ₁₅ <i>s</i> ₂₄	<i>s</i> ₁₂ <i>s</i> ₃₅	<i>s</i> ₂₄ <i>s</i> ₃₅	<i>s</i> 14 <i>s</i> 35	' <i>s</i> ₁₃ <i>s</i> ₄₅

(日) (周) (三) (三)

3

More complicated, 15 channels

 $A_5^{\rm YM} = \frac{c_1 n_1}{s_{12} s_{45}} + \frac{c_2 n_2}{s_{15} s_{23}} + \frac{c_3 n_3}{s_{12} s_{34}} + \frac{c_4 n_4}{s_{23} s_{45}} + \frac{c_5 n_5}{s_{15} s_{34}} + \frac{c_6 n_6}{s_{14} s_{25}} + \frac{c_7 n_7}{s_{14} s_{23}} + \frac{c_8 n_8}{s_{34} s_{25}} + \frac{c_9 n_9}{s_{13} s_{25}} + \frac{c_{10} n_{10}}{s_{13} s_{24}} + \frac{c_{11} n_{11}}{s_{15} s_{24}} + \frac{c_{12} n_{12}}{s_{12} s_{35}} + \frac{c_{13} n_{13}}{s_{24} s_{35}} + \frac{c_{14} n_{14}}{s_{14} s_{35}} + \frac{c_{15} n_{15}}{s_{13} s_{45}}$

Still, the color factors and the kinematic factors satisfy the same identities,

$$\begin{array}{ll} c_4+c_{15}-c_1=0, & n_4+n_{15}-n_1=0\\ c_4+c_7-c_2=0, & n_4+n_7-n_2=0\\ c_8+c_9-c_6=0, & n_8+n_9-n_6=0\\ c_3+c_8-c_5=0, & n_3+n_8-n_5=0 \end{array}$$

. . .

10 identities for c_i 's, and 10 same identities for n_i 's.

Henry Tye and Yang Zhang (LEPP)

Identities, Gluon, Graviton

More and more complicated for the growing M. The number of channels, color factors, kinematic factors are all (2M - 5)!!.

- 3

More and more complicated for the growing M. The number of channels, color factors, kinematic factors are all (2M - 5)!!. For $M \le 8$, BCJ shows that if $c_i + c_j + c_k = 0$, then $n_i + n_j + n_k = 0$.

More and more complicated for the growing M. The number of channels, color factors, kinematic factors are all (2M - 5)!!. For $M \le 8$, BCJ shows that if $c_i + c_j + c_k = 0$, then $n_i + n_j + n_k = 0$. Questions, (BCJ conjecture 1)

• Does the duality between the color factor identities and the kinematic identities hold for arbitrary *M*?

More and more complicated for the growing M. The number of channels, color factors, kinematic factors are all (2M - 5)!!. For $M \le 8$, BCJ shows that if $c_i + c_j + c_k = 0$, then $n_i + n_j + n_k = 0$. Questions, (BCJ conjecture 1)

- Does the duality between the color factor identities and the kinematic identities hold for arbitrary *M*?
- If answer for the first question is "yes", then what is the origin of this duality? (It seems that $c_i + c_j + c_k = 0$ is purely mathematical while $n_i + n_j + n_k = 0$ is physical.)

More and more complicated for the growing M. The number of channels, color factors, kinematic factors are all (2M - 5)!!. For $M \le 8$, BCJ shows that if $c_i + c_j + c_k = 0$, then $n_i + n_j + n_k = 0$. Questions, (BCJ conjecture 1)

- Does the duality between the color factor identities and the kinematic identities hold for arbitrary *M*?
- If answer for the first question is "yes", then what is the origin of this duality? (It seems that $c_i + c_j + c_k = 0$ is purely mathematical while $n_i + n_j + n_k = 0$ is physical.)

Why heterotic string theory?

Heterotic string theory, discovered by D.Gross, J.Harvey, E.J.Martinec and R.Rohm, is a closed string theory whose left-mover (holomorphic) is the open bosonic string with extra dimension while the right-mover (anti-holomorphic) is the open superstring.

Why heterotic string theory?

Heterotic string theory, discovered by D.Gross, J.Harvey, E.J.Martinec and R.Rohm, is a closed string theory whose left-mover (holomorphic) is the open bosonic string with extra dimension while the right-mover (anti-holomorphic) is the open superstring. Why heterotic string?

Why heterotic string theory?

Heterotic string theory, discovered by D.Gross, J.Harvey, E.J.Martinec and R.Rohm, is a closed string theory whose left-mover (holomorphic) is the open bosonic string with extra dimension while the right-mover (anti-holomorphic) is the open superstring. Why heterotic string?

 It contains non-abelian gauge symmetry. (So Type IIA, IIB, bosonic closed string theories would not be considered here.)

Why heterotic string theory?

Heterotic string theory, discovered by D.Gross, J.Harvey, E.J.Martinec and R.Rohm, is a closed string theory whose left-mover (holomorphic) is the open bosonic string with extra dimension while the right-mover (anti-holomorphic) is the open superstring. Why heterotic string?

- It contains non-abelian gauge symmetry. (So Type IIA, IIB, bosonic closed string theories would not be considered here.)
- It is a closed string theory so it contains both left-mover and right-mover. That is a hint for two sets (color and kinematic) of identities in BCJ

イロト イポト イヨト イヨト 二日

Why heterotic string theory?

Heterotic string theory, discovered by D.Gross, J.Harvey, E.J.Martinec and R.Rohm, is a closed string theory whose left-mover (holomorphic) is the open bosonic string with extra dimension while the right-mover (anti-holomorphic) is the open superstring. Why heterotic string?

- It contains non-abelian gauge symmetry. (So Type IIA, IIB, bosonic closed string theories would not be considered here.)
- It is a closed string theory so it contains both left-mover and right-mover. That is a hint for two sets (color and kinematic) of identities in BCJ (So open string theory with Chan-Paton factor is not used here.)

イロト イポト イヨト イヨト 二日

Massless spectrum in Heterotic string theory

As a closed string theory,

 $\mathsf{State} = \mathsf{left}\mathsf{-moving}\ \mathsf{sector} \times \mathsf{right}\mathsf{-moving}\ \mathsf{sector}$

Massless left-moving sector

- Vector sector. $i\xi_{\mu}\partial X^{\mu}e^{ik_{\nu}X^{\nu}}$
- **3** Color sector. $e^{ik_{\nu}X^{\nu}+iK_{l}X^{l}}$ or $i\zeta_{l}\partial X^{l}e^{ik_{\nu}X^{\nu}}$. *K*, discrete momentum, ζ^{l} , Cartan Lie algebra.

Massless spectrum in Heterotic string theory

As a closed string theory,

 $\mathsf{State} = \mathsf{left}\mathsf{-moving}\ \mathsf{sector} \times \mathsf{right}\mathsf{-moving}\ \mathsf{sector}$

Massless left-moving sector

- Vector sector. $i\xi_{\mu}\partial X^{\mu}e^{ik_{\nu}X^{\nu}}$
- Color sector. $e^{ik_{\nu}X^{\nu}+iK_{l}X^{l}}$ or $i\zeta_{l}\partial X^{l}e^{ik_{\nu}X^{\nu}}$. *K*, discrete momentum, ζ^{l} , Cartan Lie algebra.

Massless right-moving sector

- Vector sector. $i\zeta_{\mu}\bar{\partial}X^{\mu}e^{ik_{\nu}X^{\nu}}$
- Spinor sector.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Massless spectrum in Heterotic string theory

As a closed string theory,

 $\mathsf{State} = \mathsf{left}\mathsf{-moving}\ \mathsf{sector} \times \mathsf{right}\mathsf{-moving}\ \mathsf{sector}$

Massless left-moving sector

- Vector sector. $i\xi_{\mu}\partial X^{\mu}e^{ik_{\nu}X^{\nu}}$
- Color sector. $e^{ik_{\nu}X^{\nu}+iK_{l}X^{l}}$ or $i\zeta_{l}\partial X^{l}e^{ik_{\nu}X^{\nu}}$. *K*, discrete momentum, ζ^{l} , Cartan Lie algebra.

Massless right-moving sector

• Vector sector. $i\zeta_{\mu}\bar{\partial}X^{\mu}e^{ik_{\nu}X^{\nu}}$

Spinor sector.

- $Gluon = color sector \times vector sector$
- Graviton = vector sector × vector sector $|_{\xi_{\mu}\zeta_{\nu}\to\epsilon_{\mu\nu}}$
 - Gluino = color sector \times spinor sector
- Gravitino = vector sector \times spinor sector

Color sector

We look at the color sector more carefully. The Lie algebra of G can be decomposed into the Cartan sub-algebra and the root. Simplest example,

 $G = SU(2), L_z \in Cartan, L_+, L_- \in Roots$

Color sector

We look at the color sector more carefully. The Lie algebra of G can be decomposed into the Cartan sub-algebra and the root. Simplest example,

$${\it G}={\it SU}(2),\,\,{\it L_z}\in{\sf Cartan},\,\,{\it L_+},{\it L_-}\in{\it Roots}$$

For Gluon with the color index \in Cartan, the vertex operator is

$$i\zeta_I \partial X^I e^{ik_\nu X^\nu}$$

where ζ is an element in Cartan sub-algebra.

イロト 不得下 イヨト イヨト

Color sector

We look at the color sector more carefully. The Lie algebra of G can be decomposed into the Cartan sub-algebra and the root. Simplest example,

$${\it G}={\it SU}(2),\,\,{\it L_z}\in{\sf Cartan},\,\,{\it L_+},{\it L_-}\in{\it Roots}$$

For Gluon with the color index \in Cartan, the vertex operator is

$$i\zeta_I \partial X^I e^{ik_\nu X^\nu}$$

where ζ is an element in Cartan sub-algebra. For gluon with the color index \in as a root, the vertex operator is

$$e^{ik_{\nu}X^{\nu}+iK_{I}X^{I}}$$

. where K is a root in the root lattice, which is the momentum space of the extra dimensions.

Henry Tye and Yang Zhang (LEPP)

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

KLT relation, by H.Kawai, D.C.Lewellen and H.Tye,

closed string amplitude

= \sum left open string amplitude \times right open string amplitude

So we will first calculate the left-moving open string amplitude and right-moving open string amplitude separately. In this calculation, we find that the analytic property of the left-moving open amplitude will give the Jacobi identity

KLT relation, by H.Kawai, D.C.Lewellen and H.Tye,

closed string amplitude

= \sum left open string amplitude \times right open string amplitude

So we will first calculate the left-moving open string amplitude and right-moving open string amplitude separately. In this calculation, we find that the analytic property of the left-moving open amplitude will give the Jacobi identity while the same kind of analytic property of the right-moving amplitude will give the BCJ dual identities.

Left-moving open amplitude

We have 3 partial amplitudes (different vertex orderings),

$$\begin{aligned} \mathbf{A}_{2134}^{L(c)} &= co(2134) \int_{-\infty}^{0} dx_2 \ (-x_2)^{\frac{\alpha'}{2}k_1 \cdot k_2 + 2\alpha' K_1 \cdot K_2} (1-x_2)^{\frac{\alpha'}{2}k_2 \cdot k_3 + 2\alpha' K_2 \cdot K_3} f(x_2) \\ \mathbf{A}_{1234}^{L(c)} &= co(1234) \int_{0}^{1} dx_2 \ x_2^{\frac{\alpha'}{2}k_1 \cdot k_2 + 2\alpha' K_1 \cdot K_2} (1-x_2)^{\frac{\alpha'}{2}k_2 \cdot k_3 + 2\alpha' K_2 \cdot K_3} f(x_2) \\ \mathbf{A}_{1324}^{L(c)} &= co(1324) \int_{1}^{\infty} dx_2 \ x_2^{\frac{\alpha'}{2}k_1 \cdot k_2 + 2\alpha' K_1 \cdot K_2} (x_2-1)^{\frac{\alpha'}{2}k_2 \cdot k_3 + 2\alpha' K_2 \cdot K_3} f(x_2) \end{aligned}$$

where co(1234) and etc are the product of co-cycles, which can only be ± 1 . f(x) contains the possible polarization in lattice, i.e., color index in Cartan sub-algebra. The three amplitude are related via analytic continuation!

The integral in $\mathbf{A}_{1234}^{L(c)}$ can be continued to a contour integral which equals zero,

$$\int_{0}^{1} dx_{2} x_{2}^{\cdots} (1 - x_{2})^{\cdots} f(x_{2}) \to \int_{-\infty}^{\infty} dx_{2} x_{2}^{\cdots} (1 - x_{2})^{\cdots} f(x_{2}) = 0$$

$$e^{i\pi(rac{lpha'}{2}k_{1}\cdot k_{2})}\mathbf{A}_{2134}^{L(c)} + \mathbf{A}_{1234}^{L(c)} + e^{-i\pi(rac{lpha'}{2}k_{2}\cdot k_{3})}\mathbf{A}_{1324}^{L(c)} = 0.$$

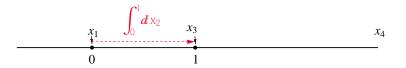
Henry Tye and Yang Zhang (LEPP)

17 / 29

(日) (四) (王) (王) (王)

The integral in $\mathbf{A}_{1234}^{L(c)}$ can be continued to a contour integral which equals zero,

$$\int_0^1 dx_2 \ x_2^{\dots}(1-x_2)^{\dots}f(x_2) \to \int_{-\infty}^\infty dx_2 \ x_2^{\dots}(1-x_2)^{\dots}f(x_2) = 0$$



$$e^{i\pi(rac{lpha'}{2}k_{1}\cdot k_{2})}\mathbf{A}_{2134}^{L(c)} + \mathbf{A}_{1234}^{L(c)} + e^{-i\pi(rac{lpha'}{2}k_{2}\cdot k_{3})}\mathbf{A}_{1324}^{L(c)} = 0.$$

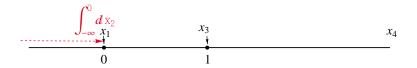
Henry Tye and Yang Zhang (LEPP)

17 / 29

(日) (四) (王) (王) (王)

The integral in $\mathbf{A}_{1234}^{L(c)}$ can be continued to a contour integral which equals zero,

$$\int_0^1 dx_2 \ x_2^{\dots}(1-x_2)^{\dots}f(x_2) \to \int_{-\infty}^\infty dx_2 \ x_2^{\dots}(1-x_2)^{\dots}f(x_2) = 0$$



$$e^{i\pi(rac{lpha'}{2}k_{1}\cdot k_{2})}\mathbf{A}_{2134}^{L(c)} + \mathbf{A}_{1234}^{L(c)} + e^{-i\pi(rac{lpha'}{2}k_{2}\cdot k_{3})}\mathbf{A}_{1324}^{L(c)} = 0.$$

Henry Tye and Yang Zhang (LEPP)

3

17 / 29

イロト 不得下 イヨト イヨト

The integral in $\mathbf{A}_{1234}^{L(c)}$ can be continued to a contour integral which equals zero,

$$\int_{0}^{1} dx_{2} x_{2}^{\cdots} (1 - x_{2})^{\cdots} f(x_{2}) \to \int_{-\infty}^{\infty} dx_{2} x_{2}^{\cdots} (1 - x_{2})^{\cdots} f(x_{2}) = 0$$

$$e^{i\pi(rac{lpha'}{2}k_{1}\cdot k_{2})}\mathbf{A}_{2134}^{L(c)} + \mathbf{A}_{1234}^{L(c)} + e^{-i\pi(rac{lpha'}{2}k_{2}\cdot k_{3})}\mathbf{A}_{1324}^{L(c)} = 0.$$

Henry Tye and Yang Zhang (LEPP)

3

17 / 29

Low energy limit

In the low energy limit, i.e., the zero slope limit only the massless state (gluon, graviton, etc.) survived so we get the field theory,

$$\lim_{\alpha' \to 0} \mathbf{A}_{1234}^{L(c)} \to A_{1234}^{L(c)}$$

イロト 不得下 イヨト イヨト 二日

Low energy limit

In the low energy limit, i.e., the zero slope limit only the massless state (gluon, graviton, etc.) survived so we get the field theory,

$$\lim_{\alpha'\to 0} \mathbf{A}_{1234}^{L(c)} \to A_{1234}^{L(c)}$$

The contour integral identity is reduced to

$$egin{aligned} &A^{L(c)}_{2134}+A^{L(c)}_{1234}+A^{L(c)}_{1324}=0, \ ext{real part}\ &sA^{L(c)}_{2134}=tA^{L(c)}_{1324}, \ ext{imaginary part} \end{aligned}$$

where $s = -(k_1 + k_2)^2$, $u = -(k_1 + k_3)^2$ and $t = -(k_1 + k_4)^2$.

Henry Tye and Yang Zhang (LEPP)

Low energy limit

In the low energy limit, i.e., the zero slope limit only the massless state (gluon, graviton, etc.) survived so we get the field theory,

$$\lim_{\alpha'\to 0} \mathbf{A}_{1234}^{L(c)} \to A_{1234}^{L(c)}$$

The contour integral identity is reduced to

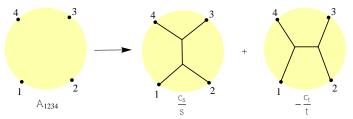
$$A_{2134}^{L(c)} + A_{1234}^{L(c)} + A_{1324}^{L(c)} = 0$$
, real part
 $sA_{2134}^{L(c)} = tA_{1324}^{L(c)}$, imaginary part

where $s = -(k_1 + k_2)^2$, $u = -(k_1 + k_3)^2$ and $t = -(k_1 + k_4)^2$. The meaning of this identity is not clear, so we look at it more carefully by the channel decomposition.

Henry Tye and Yang Zhang (LEPP)

Channels

One string amplitude, in the low energy limit, will decompose into several



channels,

$$A_{2134}^{L(c)} = -\frac{\tilde{c}_s}{s} + \frac{c_u}{u}, A_{1234}^{L(c)} = \frac{c_s}{s} - \frac{\tilde{c}_t}{t}, A_{1324}^{L(c)} = -\frac{\tilde{c}_u}{u} + \frac{c_t}{t}$$

Plug into the contour integral identities, we will get the result,

$$\begin{split} A^{L(c)}_{2134} + A^{L(c)}_{1234} + A^{L(c)}_{1324} = 0, \ \text{real part} \\ s A^{L(c)}_{2134} = t A^{L(c)}_{1324}, \ \text{imaginary part} \end{split}$$

Henry Tye and Yang Zhang (LEPP)

19 / 29

Jacobi identity

We have

$$\tilde{c}_s = c_s, \quad \tilde{c}_u = c_u, \quad \tilde{c}_t = c_t.$$

and,

$$c_s+c_t+c_u=0.$$

The direct calculation shows that $c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$, $c_t = f^{a_2 a_3 b} f^{b a_1 a_4}$ and $c_u = f^{a_3 a_1 b} f^{b a_2 a_4}$.

The contour integral for the left-moving color sector just gives the Jacobi identity, while the same method, applied on the right-moving vector sector will give the non-trivial identities $n_s + n_t + n_u = 0$.

Henry Tye and Yang Zhang (LEPP)

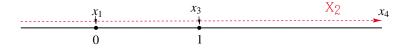
Right-moving amplitude

$$\mathbf{A}_{1234}^{R(v)} = \int_{0}^{1} dx_{2} x_{2}^{\frac{\alpha'}{2}k_{1}\cdot k_{2}} (1-x_{2})^{\frac{\alpha'}{2}k_{2}\cdot k_{3}} \overline{f}(x_{2}), \text{etc.}$$

$$\overline{f}(x_{2}) = \exp\left(\frac{\alpha'}{2} \sum_{i>j} \frac{\zeta_{i} \cdot \zeta_{j}}{(x_{i}-x_{j})^{2}} - \frac{\alpha'}{2} \sum_{i\neq j} \frac{\zeta_{i} \cdot k_{j}}{x_{i}-x_{j}}\right)\Big|_{\text{multiple-linear}}.$$

The contour integral in x_2 gives,

$$e^{i\pi(\frac{\alpha'}{2}k_1\cdot k_2)}\mathbf{A}_{2134}^{R(v)} + \mathbf{A}_{1234}^{R(v)} + e^{-i\pi(\frac{\alpha'}{2}k_2\cdot k_3)}\mathbf{A}_{1324}^{R(v)} = 0.$$



3

21 / 29

(日) (同) (日) (日) (日)

kinematic identity

$$A_{2134}^{R(v)} = -\frac{n_s}{s} + \frac{n_u}{u}, \ A_{1234}^{R(v)} = \frac{n_s}{s} - \frac{n_t}{t}, \ A_{1324}^{R(v)} = -\frac{n_u}{u} + \frac{n_t}{t}.$$

Unlike the c_i 's, the definition of n_s , n_t and n_u is not unique because we can move the contact terms between each other, $n'_s = n_s + cs$, $n'_t = n_t + ct$, $n'_u = n_u + cu$.

イロト イポト イヨト イヨト 二日

kinematic identity

$$A_{2134}^{R(v)} = -\frac{n_s}{s} + \frac{n_u}{u}, \ A_{1234}^{R(v)} = \frac{n_s}{s} - \frac{n_t}{t}, \ A_{1324}^{R(v)} = -\frac{n_u}{u} + \frac{n_t}{t}.$$

Unlike the c_i 's, the definition of n_s , n_t and n_u is not unique because we can move the contact terms between each other, $n'_s = n_s + cs$, $n'_t = n_t + ct$, $n'_u = n_u + cu$. In the low-energy limit, the imaginary part of the contour integral identity,

$$sA_{2134}^{R(v)} = tA_{1324}^{R(v)}$$

gives,

$$n_s+n_t+n_u=0,$$

This identity is invariant under the contact term rearrangement,

$$n'_{s} + n'_{t} + n'_{u} = n_{s} + n_{t} + n_{u} + c(s + t + u) = 0$$

4-gluon amplitude

KLT,

$$\mathcal{A}_{ ext{4-gluon}}^{ ext{het}} \propto \sin\left(\pi rac{lpha'}{2} k_2 \cdot k_3
ight) \cdot \mathbf{A}_{ ext{1234}}^{L(c)} \mathbf{A}_{ ext{1324}}^{R(v)}.$$

Henry Tye and Yang Zhang (LEPP)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

4-gluon amplitude

KLT,

$$\mathcal{A}_{ ext{4-gluon}}^{ ext{het}} \propto \sin\left(\pi rac{lpha'}{2} k_2 \cdot k_3
ight) \cdot \mathbf{A}_{ ext{1234}}^{L(c)} \mathbf{A}_{ ext{1324}}^{R(v)}.$$

in the low energy limit

$$\mathcal{A}_{4-\text{gluon}} \propto t\left(\frac{c_s}{s} - \frac{c_t}{t}\right)\left(-\frac{n_u}{u} + \frac{n_t}{t}\right)$$

= $\left(\left(-\frac{c_s n_u}{s} - \frac{c_s n_t}{s}\right) + \left(-\frac{c_s n_u}{u} - \frac{c_t n_u}{u}\right) + \frac{c_t n_t}{t}\right)$
= $\frac{c_s n_s}{s} + \frac{c_u n_u}{u} + \frac{c_t n_t}{t},$

so we get the deserved result with the identities $c_s + c_t + c_u = 0$ and $n_s + n_t + n_u = 0$. The duality between the two identities comes from the same contour integral identity.

Henry Tye and Yang Zhang (LEPP)

February 19, 2010 23 / 29

イロト イポト イヨト イヨト 二日

M-gluon

This method can be used for arbitrary M-gluon tree scattering amplitude. Now there are (2M - 5)!! channels, so (2M - 5)!! c_i 's and n_i 's.

$$\mathcal{A}_M^{\mathsf{YM}} = \sum_i \frac{c_i n_i}{P_i}$$

New feature We have to integrate over M - 2 variables, there are many different ways to do contour integral so there are many open string identities.

イロト イポト イヨト イヨト 二日

M-gluon

New feature: One contour integral argument gives $\binom{M-1}{3}$ color (kinematic identities). For instance, if we consider the continuation of the x_2 integral in $A_{12345}^{L(c)}$,

$$-\frac{c_3+c_8-c_5}{s_{34}}-\frac{c_4-c_2+c_7}{s_{23}}+\frac{c_4+c_{15}-c_1}{s_{45}}+\frac{c_8+c_9-c_6}{s_{25}}=0,$$

whose residues are,

$$c_3 + c_8 - c_5 = 0, \ c_4 - c_2 + c_7 = 0, \ c_4 + c_{15} - c_1 = 0, \ c_8 + c_9 - c_6 = 0.$$

By detailed combinatorics, we proved that for arbitrary M, the contour integral identities will give all the color identities between c_i 's.

The subtlety in n_i 's

It seems that as the M = 4 case, all the analysis on the color sectors can be directly applied on the vector sector. However, there is a subtlety since n_i contains the contact terms, for example,

$$-\frac{n_3+n_8-n_5}{s_{34}}-\frac{n_4-n_2+n_7}{s_{23}}+\frac{n_4+n_{15}-n_1}{s_{45}}+\frac{n_8+n_9-n_6}{s_{25}}=0,$$

 n_3 , n_8 and n_5 may contain contact terms which are proportional to s_{34} and not residues. By general channel choice, the sum, $n_3 + n_8 - n_5$ always vanishes except that contact terms. (4-point case does not have this subtlety.)

We think that (still working in progress),

- there exist a way to rearrange the contact terms in n_i 's such that $n_i + n_j + n_k$ exactly vanish.
- such a way is not unique and actually these choices form a subspace with the dimension (M-2)! (M-3)!.

When the existence of the rearrangement is found, then as the 4-point case, the dual kinematic identities are dual to the Jacobi identities Henry Tye and Yang Zhang (LEPP) Identities, Gluon, Graviton February 19, 2010 26 / 29

Graviton amplitude and other amplitudes

Turn to the M-graviton amplitude,

$$Graviton = vector \ sector \times vector \ sector$$

Now the left-mover is also vector section. We can repeat all what we did in the gluon scattering case just with some label changing

$$A^{L(c)} \rightarrow A^{R(v)}, c_i \rightarrow n_i.$$

Because we know that the gluon heterotic string amplitude, in the low energy limit, would finally reduce into,

$$\mathcal{A}_M^{\mathsf{YM}} = \sum_i \frac{c_i n_i}{P_i}$$

so the graviton heterotic string amplitude, in the low energy limit, would finally reduce into,

$$\mathcal{A}_M^{\mathsf{grav}} = \sum_i \frac{n_i n_i}{P_i}.$$

So the BCJ conjecture on graviton amplitude is also proven.

Henry Tye and Yang Zhang (LEPP)

Identities, Gluon, Graviton

4-graviton example

When KLT relation is used on color sector \times vector sector, we have.

$$\mathcal{A}_{4\text{-gluon}} \propto t\left(\frac{c_s}{s} - \frac{c_t}{t}\right)\left(-\frac{n_u}{u} + \frac{n_t}{t}\right) \\ = \frac{c_s n_s}{s} + \frac{c_u n_u}{u} + \frac{c_t n_t}{t},$$

On the other hand, When KLT relation is used on vector sector \times vector sector, we have,

$$\mathcal{A}_{4\text{-graviton}} \propto t\left(\frac{n_s}{s} - \frac{n_t}{t}\right)\left(-\frac{n_u}{u} + \frac{n_t}{t}\right) \\ = \frac{n_s n_s}{s} + \frac{n_u n_u}{u} + \frac{n_t n_t}{t},$$

which is the 4-graviton tree amplitude. The calculation is totally identical except $c_i \rightarrow n_i$.

Summary

- Up to the subtlety of the contact terms, we prove BCJ conjecture via heterotic string theory and the dualities between color/kinematic identities and also gluon/graviton are natural.
- When BCJ conjecture is proven, the calculation of graviton amplitude is dramatically simplified.

- 4 回 ト - 4 回 ト

Summary

- Up to the subtlety of the contact terms, we prove BCJ conjecture via heterotic string theory and the dualities between color/kinematic identities and also gluon/graviton are natural.
- When BCJ conjecture is proven, the calculation of graviton amplitude is dramatically simplified.

Further directions,

- KLT relation, applied in heterotic string theory, seems to give a duality between the gauge amplitude and gravity amplitude, but different from AdS/CFT. Does this relation illustrate the gauge and gravity in different regime?
- The loop amplitude is related to the tree amplitude via unitarity relations. So the BCJ conjecture would be generalized to the loop amplitude case.

- 3

イロト 不得下 イヨト イヨト